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Abstract: This work models the loss of properties from fire outbreak in Ogun State using Simple Weighted Least 

Square Regression. The study covers (secondary) data on fire outbreak and monetary value of properties loss 

across the twenty (20) Local Government Areas of Ogun state for the year 2010. Data collected were analyzed 

electronically using SPSS 21.0. Results from the analysis reveal that there is a very strong positive relationship 

between the number of fire outbreak and the loss of properties; this relationship is significant. Fire outbreak exerts 

significant influence on loss of properties and it accounts for approximately 91.2% of the loss of properties in the 

state. 
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I.    INTRODUCTION 

The method of least squares is a standard approach in regression analysis to the approximate solution of overdetermined 

systems, i.e., sets of equations in which there are more equations than unknowns. "Least squares" means that the overall 

solution minimizes the sum of the squares of the errors made in the results of every single equation. 

The most important application is in data fitting. The best fit in the least-squares sense minimizes the sum of squared 

residuals, a residual being the difference between an observed value and the fitted value provided by a model. When the 

problem has substantial uncertainties in the independent variable (the   variable), then simple regression and least squares 

methods have problems; in such cases, the methodology required for fitting errors-in-variables models may be considered 

instead of that for least squares. 

Least squares problems fall into two categories: linear or ordinary least squares and non-linear least squares, depending on 

whether or not the residuals are linear in all unknowns. The linear least-squares problem occurs in statistical regression 

analysis; it has a closed-form solution. The non-linear problem is usually solved by iterative refinement; at each iteration 

the system is approximated by a linear one, and thus the core calculation is similar in both cases. 

One of the common assumptions underlying most process modelling methods, including linear and nonlinear least squares 

regression, is that each data point provides equally precise information about the deterministic part of the total process 

variation. In other words, it is assumed that the standard deviation of the error term is constant over all values of the 

predictor or explanatory variables. This assumption, however, clearly does not hold, even approximately, in every 

modelling application. 

The usual linear regression model,        assumes that all the random error components are identically and 

independently distributed with constant variance. When this assumption is violated, then ordinary least squares estimator 

of regression coefficient looses its property of minimum variance in the class of linear and unbiased estimators. The 

violation of such assumption can arise in anyone of the following situations:             

 1. The variance of random error components is not constant.             
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2. The random error components are not independent.               

3. The random error components do not have constant variance as well as they are not independent. 

In such cases, the covariance matrix of random error components does not remain in the form of an identity matrix but can 

be considered as any positive definite matrix. Under such assumption, the ordinary least square estimate (OLSE) does not 

remain efficient as in the case of identity covariance matrix. The generalized or weighted least squares method is used in 

such situations to estimate the parameters of the model. 

Unlike linear and nonlinear least squares regression, weighted least squares regression is not associated with a particular 

type of function used to describe the relationship between the process variables. Instead, weighted least squares reflects 

the behaviour of the random errors in the model; and it can be used with functions that are either linear or nonlinear in the 

parameters. It works by incorporating extra nonnegative constants, or weights, associated with each data point, into the 

fitting criterion. The size of the weight indicates the precision of the information contained in the associated observation. 

Optimizing the weighted fitting criterion to find the parameter estimates allows the weights to determine the contribution 

of each observation to the final parameter estimates. It is important to note that the weight for each observation is given 

relative to the weights of the other observations; so different sets of absolute weights can have identical effects. 

Each term in the weighted least squares criterion includes an additional weight, that determines how much each 

observation in the data set influences the final parameter estimates and it can be used with functions that are either linear 

or nonlinear in the parameters. 

In a weighted fit, less weight is given to the less precise measurements and more weight to more precise measurements 

when estimating the unknown parameters in the model. Using weights that are inversely proportional to the variance at 

each level of the explanatory variables yields the most precise parameter estimates possible. Weighting the sum of the 

squares of the differences may significantly improve the ability of the least square regression to fit the linear model to the 

data. Weighted least square is an efficient method that makes good use of small data set. It also shares the ability to 

provide different types of easily interpretable statistical intervals for estimation, prediction, calibration and optimization. 

It is to these effects that this study was undertaken to examine the application of the weighted least square regression in 

forecasting.  

II.    STATEMENT OF THE PROBLEM 

Weighted least square (WLS) regression is useful for estimating the values of model parameters when the response values 

have differing degrees of variability over the combinations of the predictor values. The problem of this study is modelling 

the loss of properties from fire outbreak by Simple Weighted Least Square Regression. 

III.   SCOPE OF THE STUDY 

This study covers data on fire outbreak and monetary value of properties loss across the twenty (20) Local Government 

Areas of Ogun state, Nigeria for the year 2010. The year 2010 data being the current data available through the Ogun 

State Statistical Year Book, 2011. The data collected is secondary in nature. 

IV.    LITERATURE REVIEW 

Ever since the seminal publications of Legendre (1805) and Gauss (1809), the method of least squares (LS) has been a 

main tool or approach of modern statistical analysis (Celmins, 1998; Kalman, 1960; Plackett, 1949; Plackett, 1950; Seal, 

1967; Sprott, 1978; Stigler, 1981; Young, 1974). 

In a regression problem with time series data (where the variables have subscript " " denoting the time the variable was 

observed), it is common for the error terms to be correlated across time, but with a constant variance; this is the problem 

of "autocorrelated disturbances". For regressions with cross-section data (where the subscript " " now denotes a particular 

individual or firm at a point in time), it is usually safe to assume the errors are uncorrelated, but often their variances are 

not constant across individuals.  This is known as the problem of heteroscedasticity (for "unequal scatter"); the usual 

assumption of constant error variance is referred to as homoscedasticity.  Although the mean of the dependent variable 
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might be a linear function of the regressor, the variance of the error terms might also depend on the same regressor, so that 

the observations might "fan out" in a scatter diagram (Econometrics Laboratory 1999). This inherently assumes a given 

degree of heteroscedasticity in which the variance of   increases proportionately with increased values of  . 

In ordinary least squares, the estimated coefficients provide the regression equation that minimizes SSE = ∑  
 . 

In weighted least squares (WLS), the estimated equation minimizes  ∑    
  where    is a weight given to the  th

 

observation. The object is to minimize the sum of the squares of the random factors of the estimated residuals. If the 

weights are all the same constant, then we have ordinary least squares (OLS) regression. However, if the structure of the 

data suggests unequal weights are appropriate, then it would be inappropriate to ignore the regression weights. With one 

regressor, usually the regression weights are functions of that regressor (James R. Knaub, 2012). 

Uses of Weighted Least Squares (WLS): 

1. Weighted least squares can be used in the presence of non-constant variance. If the variance of the i
th

 observation is   
 , 

then weights    
 

  
  give theoretically correct results for standard errors of coefficients and the various significance tests.  

With    
 

  
   notice that  ∑    

  ∑
 

  
   

  ∑(
  

  
)
 

. So, we‟re minimizing the sum of squared standardized errors 

when weights = 1/variance. 

2. Weighted least squares is often used as the basis for doing “robust” regression in which outliers are given less weight 

than points that aren‟t outliers. 

Identifying the weights: 

The principal difficulty in practice is determining values for the weights. If we see non-constant variance in a plot of 

residuals versus fits, then we might consider using weighted least squares.  

Most commonly, the pattern of non-constant variance is that either the standard deviation or the variance of the residuals 

is linearly related to the mean (the fits). This occurs theoretically in most skewed distributions, for instance.  

The absolute residuals essentially are estimates of standard deviation. So we might plot absolute residuals versus fits. If 

this looks linear, we could fit a regression line (response = absolute residuals, predictor = fits) to the pattern. The 

predicted values from this regression could be viewed as smoothed estimates of the standard deviations of the points. So, 

our weights in a weighted least squares regression would be    
 

  ̂  
  . Note that the “predicted” standard deviations 

would have to be squared in the weight function.  

The squared residuals essentially are estimates of variances. We might plot squared residuals versus fits. If this looks 

linear, we could fit a regression line (response = squared residuals, predictor = fits) to determine smoothed estimates of 

the variance. Denote these estimates as  ̂ 
 
 . Then, in a weighted regression, use weights    

 

 ̂ 
 . 

The nature of Weighted Least Squares (WLS) Regression: 

“All horses are animals, but not all animals are horses.” (Socrates) - Analogously, all ordinary least squares (OLS) 

regressions are weighted least squares (WLS) regressions, but not all WLS regressions are OLS. That is, OLS regression 

is a special case of WLS regression. Many may use OLS as a default, and in some applications that might be good 

enough, but just because we do not know what weights are appropriate, it does not mean that one avoids assigning 

weights by using OLS, because we are de facto claiming that the weights are equal. That, in fact, is a very decisive 

assignment of weights. For establishment surveys, that is not a good assumption. See Brewer (2002). When we use 

regression through the origin, the strong weight assumption implicit in OLS regression is likely to be a highly faulty 

assumption.  

An example of this confusion, from NIST (2009), a generally very nice handbook, is as follows: “The biggest 

disadvantage of weighted least squares, which many people are not aware of, is probably the fact that the theory behind 

this method is based on the assumption that the weights are known exactly. … It is important to remain aware of this 

potential problem, and to only use weighted least squares when the weights can be estimated precisely relative to one 
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another.” This is very misleading because it says that if one cannot estimate regression weights “precisely relative to one 

another” then one should always assume that they are equal. This may sometimes be true enough, but not for regression 

through the origin. Some information regarding the regression weights should be gleaned in any case. To use OLS 

actually does assume one knows the regression weights “precisely relative to one another.”  

Weights can be estimated from the data. (See Knaub(1993, 1997), Carroll and Ruppert(1988), Sweet and Sigman(1995), 

Steel and Fay(1995), and Brewer(1963), for example.) If the estimated weights cause an increase in estimated variance, it 

is not OK to pick another weight solely to lower the variance estimate. Such an estimate would not be justified unless 

there was a functional reason for it.  

The object is to give less weight to the more uncertain data points, and those are generally the largest, but data near the 

origin can have disproportionately large measurement error in many practical situations. A good reason for using cutoff 

sampling is to avoid collecting data that are not reliable. Often with design-based sampling, the smallest observations are 

imputed by some model since they are either non-respondents or their responses do not „pass the laugh test‟ (badly fail 

reasonable edits). However, from Knaub (2008), one may find a modified weight to be better for reasons of robustness. 

Benefits and Disadvantages of WLS: 

Weighted least squares is an efficient method that makes good use of small data sets. It also shares the ability to provide 

different types of easily interpretable statistical intervals for estimation, prediction, calibration and optimization. The main 

advantage that weighted least squares enjoys over other methods is the ability to handle regression situations in which the 

data points are of varying quality. 

The biggest disadvantage of weighted least squares, is probably the fact that the theory behind this method is based on the 

assumption that the weights are known exactly. The exact weights are almost never known in real applications, so 

estimated weights must be used instead. The effect of using estimated weights is difficult to assess, but experience 

indicates that small variations in the weights due to estimation do not often affect a regression analysis or its 

interpretation. When the weights are estimated from small numbers of replicated observations, the results of an analysis 

can be very badly and unpredictably affected. This is especially likely to be the case when the weights for extreme values 

of the predictor or explanatory variables are estimated using only a few observations. It is important to remain aware of 

this potential problem, and to only use weighted least squares when the weights can be estimated precisely relative to one 

another. 

Weighted least squares regression, is also sensitive to the effects of outliers. If potential outliers are not investigated and 

dealt with appropriately, they will likely have a negative impact on the parameter estimation and other aspects of a 

weighted least squares analysis.  

If a weighted least squares regression actually increases the influence of an outlier, the results of the analysis may be far 

inferior to an unweighted least squares analysis 

Derivation of coefficient for single regressor for WLS: 

The Ordinary Least Square (OLS) 

In the simple linear regression model  

                _____(i) 

We compute the residuals,    as 

                    _____(ii)  

                   

    Or         ̂      _____(iii) 

Where  ̂  is the predicted value of    

Square of the residuals give 
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The Ordinary Least Square function gives 

    ∑  
  ∑          

      _____(iv) 

    [Sum of square of the residuals] 

For easy computation, let   be represented by the sum of square of the residuals, so that 

         ∑  
         

      ∑          
      _____(v) 

We want to minimize   with respect to   and  . The least square estimate (  and  ) of   and   is obtained by 

differentiating   and equate the derivative to zero (0). 

  Thus  
  

  
    ∑                 _____(vi) 

  Or    ∑                 

    ∑                

    ∑   ∑  ∑        

    ∑   ∑   ∑         

    ∑       ∑     

        ∑   ∑        

       ∑    ∑   

      
∑  

 
  

∑  

 
   

       ̅    ̅      _____(vii) 

  Also  
  

  
    ∑                   _____(viii) 

  Or    ∑             
         

    ∑             
       

    ∑     ∑    ∑   
         

    ∑     ∑     ∑  
        

    ∑     ∑  
  ∑     

     ∑  
  ∑     ∑    

     ∑  
  ∑     ∑       

     ∑  
  ∑      ∑       _____(ix) 

 On substituting (vi) into (viii) we have 

     ∑  
  ∑       ̅    ̅ ∑    

     ∑  
  ∑      ̅ ∑    ̅ ∑   

     ∑  
   ̅ ∑   ∑      ̅ ∑   

      ∑   
   ̅ ∑    ∑      ̅ ∑   

      
∑        ̅ ∑   

∑  
    ̅ ∑   
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   Or    
 ∑       ∑   ∑  

 ∑  
     ∑   

       _____(x) 

The Weighted Least Square (WLS): 

In this method, the deviation between the observed and expected values  of    is multiplied by a weight    where    is 

chosen to be inversely proportional to the variance of   .  

For simple linear regression model            : 

The Weighted Least Squares function is  

    ∑    
  ∑            

     _____(xi) 

For easy computation, let   be represented by the sum of square of the residuals, so that     ∑    
     

      ∑            
      _____(xii) 

We want to minimize   with respect to   and  . The least square estimate (  and  ) of   and   is obtained by 

differentiating   and equate the derivative to zero (0). 

  Thus  
  

  
    ∑                   _____(xiii) 

  Or    ∑                   

    ∑                 

    ∑     ∑    ∑           

    ∑      ∑    ∑         

     ∑   ∑      ∑      

      
∑        ∑    

∑  
      _____(xiv) 

 Also  
  

  
    ∑                     _____(xv) 

  Or    ∑               
         

    ∑               
          

    ∑       ∑      ∑     
      

    ∑        ∑      ∑    
      

     ∑    
  ∑        ∑     

      
∑          ∑    

∑    
       _____(xvi) 

  On substituting (xiv) into (xvi) we have 

      
∑           [

∑        ∑    
∑  

]∑    

∑    
  

        
∑         [

∑    ∑        (∑    )
 

∑  
]

∑    
  

        
 
∑  ∑           *∑    ∑        (∑    )

 
+

∑  

∑    
  

      
∑  ∑         ∑    ∑           ∑     

 

∑  ∑    
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    ∑  ∑    
      ∑  ∑         ∑    ∑        ∑     

  

    ∑  ∑    
      ∑     

     ∑  ∑         ∑    ∑      

    [∑  ∑    
     ∑     

 ]     ∑  ∑         ∑    ∑     

        
∑  ∑         ∑    ∑    

∑  ∑    
     ∑     

           _____(xvii) 

Coefficient for single regressor with zero intercept: 

(Regrssion Through the Origin) 

When the linear regression model,          has zero intercept, then 

  ∑  
  ∑        

   and    
∑     

∑   
      (OLS)    ____(xviii) 

Similarly ∑    
  ∑          

   and    
∑       

∑    
      (WLS)   ____(xix) 

Summary of results: 

For simple linear regression model: 

          

Ordinary Least Square (OLS) Weighted Least Square 

 

  
 ∑       ∑   ∑  

 ∑  
     ∑    

 
 

 

     
∑  ∑         ∑    ∑    

∑  ∑    
     ∑     

 
 

 

   ̅    ̅ 

 

  
∑        ∑    

∑  

 

If the weights,   , are all the same constant, then we have ordinary least squares (OLS) regression. 

V.    MATERIALS & METHODS 

Research design: 

This research was designed to model the monetary loss of properties due to fire outbreak across the twenty (20) Local 

Government Areas of Ogun state using the Weighted Least Square Regression. 

For the successful execution of this research work, secondary data on loss of properties and fire outbreak for the year 

2010 was employed. This was extracted from the Ogun State Statistical Year Book, 2011. Data collected were analyzed 

electronically using SPSS 21.0. 

Techniques of data analysis: 

The data analysis techniques employed are the Weighted Least Square (WLS) Regression, Descriptive Statistics, 

Correlation (R) and Coefficient of Determination (R
2
). 

Method of data analysis: 

In analyzing the data for WLS regression, the Number of Fire Outbreak per Local Government Area represents the 

predictor variable     while the Loss of Properties represents the predicted variable    . The squared residuals from the 

OLS were used as estimates of variances in the weight      function. Coefficients           of the simple linear 

regression model,          are estimated using  

          
∑  ∑         ∑    ∑    

∑  ∑    
     ∑     

  and    
∑        ∑    

∑  
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VI.   RESULT 

TABLE 1:Descriptive Statistics
a
 

 Mean Std. Deviation N 

Loss of Properties 546.7072 2.70165 20 

Fire Outbreak 37.53 .154 20 

a. Weighted Least Squares Regression - Weighted by Weight 

 

TABLE 2:Correlations
a
 

 Loss of Properties Fire Outbreak 

Pearson Correlation 
Loss of Properties 1.000 .955 

Fire Outbreak .955 1.000 

Sig. (1-tailed) 
Loss of Properties . .000 

Fire Outbreak .000 . 

N 
Loss of Properties 20 20 

Fire Outbreak 20 20 

a. Weighted Least Squares Regression - Weighted by Weight 

 

TABLE 3: Model Summary
b,c

 

Model R R Square Adjusted R Square Std. Error of the Estimate 

1 .955
a
 .912 .908 .82165 

a. Predictors: (Constant), Fire Outbreak 

b. Dependent Variable: Loss of Properties 

c. Weighted Least Squares Regression - Weighted by Weight 

 

TABLE 4: Coefficients
a,b

 

Model Unstandardized Coefficients Standardized 

Coefficients 

t Sig. 

B Std. Error Beta 

1 
(Constant) -80.485 50.345  -1.599 .127 

Fire Outbreak 16.713 1.221 .955 13.690 .000 

a. Dependent Variable: Loss of Properties 

b. Weighted Least Squares Regression - Weighted by Weight 

The WLS regression model is thus:                     

VII.    DISCUSSION OF RESULTS 

Descriptive Statistics: 

Table 1 indicates the mean number Fire Outbreak for the year across the twenty LGA of the State is approximately 38 

with a standard deviation of 0.154. The mean Loss of properties for the year across the twenty LGA of the State is 

approximately N546,707,200.00 with a standard deviation of 2.70165. 

Correlations (R): 

Table 2 indicates that there is a very strong positive but imperfect relationship between the number of fire outbreak and 

the loss of properties, with a correlation value of 0.955. In addition, this correlation is indicated to be significant, with a 

sig.value of 0.000 
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Coefficient of Determination (R
2
): 

Table 3 indicates that approximately 91.2% of the variation in the loss of properties is being explained by fire outbreak, 

with a R
2
 value of 0.912.  

Regression Coefficients: 

Table 4 indicates the regression coefficients          , where a = –80.485 implies that when there is no fire outbreak we 

expect the loss of properties to be at a fall of N80,485,000.00.     b = 16.713 which implies that if fire outbreak increases 

by 1, the loss of properties is expected to increase by N16,713,000.00. This gives the WLS regression model as:           

                   . The sig.value of 0.000 for the predictor variable (Fire outbreak) indicates that fire outbreak is 

a statistically useful predictor of loss of properties. In other words, fire outbreak is significant in predicting the loss of 

properties. 

VIII. CONCLUSIONS 

From the results of this study, it can be concluded that there is a very strong positive relationship between the number of 

fire outbreak and the loss of properties; this relationship is however significant. An increase in the number of fire outbreak 

will lead to increase in monetary loss of properties and vice versa. In addition, fire outbreak exerts significant influence on 

loss of properties. Finally, fire outbreak accounts for approximately 91.2% of the loss of properties in the state. 

IX.   RECOMMENDATIONS 

1. Since an increase in the number of fire outbreak will lead to increase in monetary loss of properties, it is therefore 

important that the government setup efficient and effective fire service centres across each local government area of the 

state for effective response to any fire outbreak. 

2. As part of effort to reduce loss of properties to fire outbreak, government and concerned bodies should frequently be 

orientating the populace on how best to prevent and manage fire outbreak. 
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APPENDIX 

TABLE 5: Monetary loss of properties due to fire outbreak across the twenty (20) Local Government Areas of Ogun state in 

year 2010 

LGA Number of Fire Outbreak Loss of properties (m’N) Weights 

ABEOKUTA NORTH 55 1520.60 1.88552E-06 

ABEOKUTA SOUTH 80 660.30 4.91234E-06 

ADO ODO OTA 20 1040.45 2.07085E-06 

EWEKORO 20 47.52 1.12589E-05 

IFO 15 95.04 2.8696E-05 

IJEBU EAST 12 47.52 2.60576E-05 

IJEBU NORTH 13 480.15 1.99361E-05 

IJEBU NORTH EAST 15 47.52 1.82322E-05 

IJEBU ODE 50 760.30 0.000989852 

IKENNE 25 95.04 1.01209E-05 

MEKO AFON 15 47.52 1.82322E-05 

IPOKIA 15 47.52 1.82322E-05 

OBAFEMI OWODE 16 760.30 4.60859E-06 

ODEDA 15 47.52 1.82322E-05 

ODOGBOLU 20 95.04 1.59356E-05 

OGUN WATERSIDE 12 95.04 4.54206E-05 

REMO NORTH 12 95.04 4.54206E-05 

SAGAMU 15 1240.45 1.08794E-06 

YEWA NORTH 15 190.07 0.000119061 

YEWA SOUTH 15 200.07 0.000150012 

 


